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SUMMARY

Flow computations frequently require unfavourably meshes, as for example highly stretched elements in
regions of boundary layers or distorted elements in deforming arbitrary Lagrangian Eulerian meshes. Thus,
the performance of a flow solver on such meshes is of great interest. The behaviour of finite elements with
residual-based stabilization for incompressible Newtonian flow on distorted meshes is considered here.

We investigate the influence of the stabilization terms on the results obtained on distorted meshes by
a number of numerical studies. The effect of different element length definitions within the elemental
stabilization parameter is considered. Further, different variants of residual-based stabilization are compared
indicating that dropping the second derivatives from the stabilization operator, i.e. using a streamline
upwind Petrov–Galerkin type of formulation yields better results in a variety of cases. A comparison of
the performance of linear and quadratic elements reveals further that the inconsistency of linear elements
equipped with residual-based stabilization introduces significant errors on distorted meshes, while quadratic
elements are almost unaffected by moderate mesh distortion. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Residual-based stabilization methods are a common means to simulate incompressible flow prob-
lems on Eulerian as well as on deforming grids. In particular, in the latter case, distorted elements
are an inherent feature and cannot be avoided.
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The effect of element distortion on the error obtained on distorted meshes can hardly be
investigated theoretically. An attempt to do so is made here by showing that the presence or the
sign of the viscous term within the stabilization operator can have a significant impact on the
performance of stabilized methods on deformed grids. It turns out that a Galerkin-least-squares
(GLS) type of formulation is much more robust than one derived from virtual bubbles (also termed
unusual stabilized finite element method, USFEM), while the two differ only in the sign of the
second derivatives in the stabilization operator. In contrast to a GLS stabilization, USFEM relies on
the correct choice of the element parameter mk, which is defined by an inverse estimate. However,
on distorted meshes (in particular on deforming meshes), this parameter is time dependent and
reduces with increasing element distortion. As a consequence, USFEM may lose stability if a
constant mk is employed, which is frequently the case.

The behaviour of stabilization parameters for differently shaped 2D elements has been investi-
gated by Tezduyar and Osawa in [1], where different parameters for various flow directions are
compared. A comparative investigation has also been reported by Akin and Tezduyar in [2]. In
this later study not only the stabilization parameters, but also solution accuracies are compared for
test cases at the advective limit.

The actual sensitivity of residual-based stabilized methods to mesh distortion has to be inves-
tigated numerically. The shape of the element may also influence a second key parameter in
stabilized schemes: the characteristic element length hk . We compare seven different definitions of
the element length among which are ones defined by Codina and Soto [3], the one given by Taylor
et al. [4], the one specified by Whiting and Jansen [5] and definitions introduced by Mittal in [6].

As a basic test case, the Kim–Moin flow is used, which allows a comparison with analytical
results. Particular emphasize is put on a comparison of linear and quadratic elements as the first
suffer from an inherent inconsistency when stabilized by the residual-based stabilization methods.
It turns out that the inconsistency deficiency increases with increasing element distortion, which
can be understood as a strong argument for higher-order elements. The effect of misplaced edge
and centre nodes of quadratic elements are considered separately.

We also repeat a number of calculations performed by Mittal [6] to investigate the influence
of highly stretched (high aspect ratio) elements. Here, as in other test cases, quadratic elements
perform better in terms of accuracy and show very insensitive with respect to the element length
definition used within the stabilization parameter �Mk . In contrast to the results reported in [6] we
do not obtain any instability or oscillations.

After stating the governing equations and the discretization in Section 2, we introduce the
stabilized formulation employed in Section 3. Within this section, we also discuss the different
element length definitions we wish to compare. Section 4 contains a number of numerical studies
of the influence of elemental distortion on the overall result. Conclusions are drawn in Section 5.

2. GOVERNING EQUATIONS AND DISCRETIZATION

The fluid under consideration is assumed as Newtonian and its motion is governed by the
incompressible Navier–Stokes equations. Expressed in primitive variables, the vector field of the
velocity u and the scalar field of the pressure p, the flow equations read

LM (u, p)=b in �×T (1)

LCu=0 in �×T (2)
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where the operators of linear momentum and continuity are given by

LM (u, p)= �u
�t

∣∣∣∣
x
+∇·(u⊗u)−2�∇ ·e(u)+∇p (3)

LCu=∇ ·u (4)

respectively. We use bold symbols to distinguish vector or tensor-valued functions from scalars.
The bounded region � in Rm , m=2,3 having sufficiently smooth boundary � is assumed to

be constant in time. The boundary can be decomposed into �N and �D carrying Neumann and
Dirichlet boundary conditions, respectively. The Eulerian frame of reference is denoted by x.

Equation (1) has been normalized by the fluid density �, thus �=�/� represents the kinematic
viscosity and p= p/� the kinematic pressure, where p denotes the physical pressure value. The
specific volume force is given by b. The second-order tensor e(u) represents the strain rate and
depends linearly on the velocity according to

e(u)= 1
2 (∇u+(∇u)T)

The operator of linear momentum (3) is stated in Eulerian description for the clarity of presentation,
while stabilized finite elements are used for flows on deforming domains (i.e. arbitrary Lagrangian
Eulerian (ALE) formulations) in an equal manner.

2.1. Discretization in time

To discretize the system of equations (1) and (2) in time, the second-order accurate backward
differencing (BDF2) scheme is employed which on a general first-order differential equation
ẏ= f (y, t) reads

yn+1− yn

�t
= 1

3

yn− yn−1

�t
+ 2

3
f (yn+1, tn+1) (5)

Applying (5) to the strong form (1) yields

un+1+ 2
3�t[un+1 ·∇un+1−2�∇ ·e(un+1)+∇pn+1]=rn+1 (6)

where the vector rn+1 contains the right-hand side contributions emerging from the time discretiza-
tion and the body force vector b as

rn+1= 2
3�tb

n+1+ 4
3u

n− 1
3u

n−1

Performing the temporal discretization prior to the discretization in space reveals the correct
operator to be stabilized. This might be of particular concern in the context of very small time
steps that yield a dominating zeroth-order term [7].

2.2. Discretization in space

The temporally discretized equation (6) is now discretized in space by means of finite elements.
In the usual way the domain � is divided into non-overlapping patches, the elements.

To define the Galerkin weak form, we selectC0 Lagrangian finite element spacesVh ⊂H1(�) and
Vh
0 ⊂H1

0(�), where the functions in Vh satisfy the Dirichlet boundary conditions of the problem,
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while all functions in Vh
0 are zero on �D. The pressure is taken from the space Ph ⊂ L2

0(�) of
square integrable functions with vanishing mean to account for the free additive constant of the
pressure variable.

The discrete variational statement is as follows: seek u∈Vh , p∈ Ph such that

Bgal({u, p},{v,q})=(r,v)+(hn+1,v)�N for all (v,q)∈(Vh
0, P

h) (7)

where the discrete operator B({u, p},{v,q}) is given by

Bgal({u, p},{v,q}) = (u,v)+( 23�tu·∇u,v)+( 23�t2�e(u),e(v))

−( 23�tp,∇ ·v)−�( 23�tq,∇·u) (8)

Here, (·, ·) denotes the L2 inner product on � if not indicated otherwise and hn+1 represents
Neumann boundary forces at the time instant t= tn+1.

The parameter � in (8) can take the values {−1,1}, i.e. it carries the sign of the pressure test
function q . Introduced by Barth et al. [8], it helps to offer a systematic distinction between related
but different residual-based stabilization methods.

Remark
The last term of the Galerkin form (8) originates from the continuity equation (2). Since this
equation does not contain time derivatives, the ‘time factor’ 2

3�t in the last term of (8) does not
emerge from time discretization, but appears useful in order to serve pressure symmetry.

3. STABILIZED FLUID FORMULATION

It is a well known matter of fact that the Galerkin form (7) is ill posed due to the inf–sup condition
in the case of finite elements with equal polynomial order in Vh and Ph defined on the same
triangulation. To stabilize the artificial pressure modes as well as oscillations due to convection,
residual-based stabilization is applied.

The stabilized variational problem is given by: find u∈Vh , p∈ Ph such that

Bgal({u, p},{v,q})−∑
k

�Mk(RM (u, p),Lstab
M (u,{v,q}))k+∑

k
�Ck(RC (u),LC (v))k

=(r,v)+(hn+1,v)�N for all (v,q)∈(Vh
0, P

h) (9)

where k counts all elements of the triangulation. The inner products within the stabilization terms
indicated by the subscript k have to be evaluated on the element interiors only.

Stabilization with the residual of the continuity equation RC (u) has been introduced by Franca
and Hughes [9] and offers benefit especially for high Reynolds numbers [10, 11]. Franca and
Oliveira [12] also showed that the continuity stabilization term can, similar to the momentum one,
be recovered as static condensation of a bubble function.

The stabilization is based on the temporally discretized residuals

RM (un+1, pn+1)=un+1+ 2
3�t[un+1 ·∇un+1−2�∇ ·e(un+1)+∇pn+1]−rn+1 (10)

RC (un+1)=∇ ·un+1 (11)
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and employs the stabilization operators

Lstab
M (u,{v,q})=�v+ 2

3�t (−u·∇v−�2�∇ ·e(v)+�∇q) (12)

Lstab
C (v)=LC (v)=∇·v (13)

A number of related stabilization methods are specified by different parameter combinations of
�∈{0,1}, �∈{−1,0,1} and �. All the possible methods are consistent in the sense that sufficiently
smooth solutions of the strong equations (1) and (2) satisfy the stabilized discrete form (9). Using
�=1, �=1 and �=−1, i.e. employing the adjoint of the linearized operator yields the unusual
stabilized method of Franca and coworkers [13–15]. Setting �=0, �=−1 and �=−1 reveal the
GLS stabilization for the corresponding stationary operator. Using �=0, i.e. dropping the viscous
term from the stabilization operator yields a method in the sense of the streamline upwind Petrov–
Galerkin (SUPG) stabilization. An overview over properties of different schemes (in terms of �
and �) in the case of the stationary Stokes problem has been given in [8]. It can be shown that
the use of a zeroth-order term within the stabilization operator offers some benefit in the context
of dominating zeroth-order terms, while it should not be used in conjunction with linear elements
in space [16].

The stabilization parameters used are the one developed from virtual bubble functions for the
linear Stokes problem [17] or the reaction–advection–diffusion equation [15], to stabilize the mixed
problem or the advective term, respectively. The parameters have been adopted to the formulation
used here.

�Mk = h2k

h2k	1+ 8�t�

3mk
	2

(14)

The parameters 	1 and 	2 depend on the effects dominating the flow in a particular element

	1=max(rk,1), 	2=max(Rek,1)

where Rek is a measure of an elemental Reynolds number and represents the ratio of advective
to viscous forces on element level. The symbol rk denotes the ratio of the viscous, second-order
term to the zeroth-order term introduced by time integration

rk = 8�t�

3mkh2k

Rek = mk |u|hk
2�

The Euclidean norm of the velocity |u| is used here as a measure of the convective term, where
the parameter

mk =min{ 13 ,Ck} (15)

carries the influence of the particular discretization. It is defined by an inverse estimate [15, 18]
while here a local definition is employed

Ckh
2
k‖�v‖2k�‖∇v‖2k for all v∈Vh

k (16)
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where Vh
k is the restriction of the discrete space Vh on the element k. Based on the analysis

given in [18], mk = 1
3 and mk = 1

12 are used for linear and quadratic elements, respectively. The
significance of mk will be discussed further in Section 4.

Employing the above definitions, the continuity stabilization parameter is given by

�Ck = 2�thk |u|
6

	2

This parameter is of particular interest in the high Reynolds number regime and thus given here
for completeness only.

3.1. Inconsistency of linear elements

The discrete Galerkin weak form stems from a weighted residual of the temporally discretized
equation (6), which is enhanced by adding the residual element wise weighted by the stabilization
operator. Let us assume sufficient smoothness of the velocity approximation and consider the
weighted residual method including stabilization terms read

(RM ,v)+(RC ,q)−∑
k

�Mk(RM ,Lstab
M )k+∑

k
�Ck(RC ,LC )k =0 (17)

The stabilized form (9) is obtained from (17) by integrating the stress term within the first terms
by parts, which reduces the continuity requirement for the velocity to standard C0 continuity. No
such modification is done on the stabilization part. Thus, within the stabilization terms, the residual
of the linear momentum equation RM contains second derivatives which cannot be represented
correctly by linear elements. Suggestions to avoid or at least reduce this inconsistency for low-
order elements have been made by Jansen and coworkers [19], while the proposed modifications
belong to the class of variational crimes and do not show a significant improvement on the distorted
meshes considered here. In [1], Tezduyar and Osawa suggest to introduce the flux jump terms into
the stabilized formulation. This approach requires the evaluation of element boundary integrals for
all elements.

For purely linear elements, i.e. three-noded triangles in 2D and four-noded tetrahedrons in 3D,
the residual of the momentum equation which is used within the stabilization term reduces to

Rstab
M,lin=un+1+ 2

3�t[un+1 ·∇un+1+∇pn+1]−rn+1

where for general bi- or trilinear elements a rudiment of the viscous part remains, which is unable
to properly represent the respective term but rather deteriorates accuracy.

The incompletely resolved second derivatives are included not only in the residuum, but also
within the stabilization operator as soon as USFEM or GLS type of stabilization is employed
(i.e. � �=0). Numerical observations indicate that these derivatives in the weighting term are an
additional source of inaccuracy if bilinear or trilinear elements are employed.

As the so introduced consistency error scales with the stabilization parameter �Mk , it diminishes
at spatial or temporal refinement. While not affecting the convergence rates, it is present for
particular discretizations with linear elements. Thus, in such simulations a part of the error is to
be found, which scales directly with the stabilization parameter. Consequently, it is of particular
importance to employ a stabilization parameter as small as possible when linear elements are
used in conjunction with residual-based stabilization methods. A lower bound on the stabilization
parameter is required to prevent the artificial pressure modes resulting from the violation of the
inf–sup condition.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1103–1126
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3.2. Element length definitions

The characteristic element length hk has a significant impact on the actual amount of stabilization
employed as at the viscous limit the stabilization parameter is proportional to h2k while it is linear
in hk at the convective limit. Especially, in the context of mesh distortion or highly elongated
elements, the element length definition has to be chosen carefully [6].

Various definitions have been suggested and discussed in the literature. An overview can be
found in [11], where also the suggestion was made to use different element lengths within the
different terms. A geometric ‘isotropic’ element length definition (for example, the square root of
the elemental area) is suggested when the viscous terms dominate, while a streamlength is used
for convection-dominated flows. Within this paper the following definitions for the characteristic
element lengths are compared by numerical investigations

(i) square root of element area,

hk =√Ak

(ii) element length in flow direction [11] evaluated once at element centre,
(iii) approximate element length in flow direction as defined by Codina and Soto in [3]

hk = |u|
|u0|h0

where the subscript 0 refers to the reference configuration, and
(iv) element length for anisotropic meshes as defined by Codina and Soto in [3], where the

smallest eigenvalue of the operator B is taken as a characteristic element length. B stems
from the polar decomposition of the Jacobian J of the isoparametric mapping to the element
domain, i.e. J=BZ, where B is symmetric and positive-definite, whereas Z is orthogonal.

Further an implicit definition of the element length which has been suggested by Taylor, Hughes
and coworkers [4, 5] is also included into the comparison.

(v) Employing the covariant coordinates of the metric tensor gi j of the mapping from global
Cartesian coordinates to the element parameters, the stabilization parameter is given by

�Me=(4+ 4
9 (�t)

2(ui gi j u j +c�2gi j gi j ))
−1/2

where the constant c is set to 36 and to 60 for linear and quadratic elements, respec-
tively [5, 20]. The corresponding stabilization parameter for the continuum equation is
given by

�Ce=(8�Me tr(gi j ))
−1

Additionally, the element length definitions investigated by Mittal [6] are considered as parts of
the computations reported in [6] are repeated here.

(vi) minimal element length given by

hk =hk,min=
√
2Ae

max(hdiag)
(18)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1103–1126
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(vii) maximal element length defined as the edge length of a square with a diagonal of max(hdiag)

hk =hk,max= max(hdiag)√
2

(19)

Although the element length definitions (i), (iv) and (v) to (vii) are purely geometrical, the
streamlength (ii) and (iii) depends upon the velocity and hence adds to the overall nonlinearity.
Consequently, the convergence rate of the fluid iterations decreases when these stabilization param-
eters are employed. In complex situations convergence may even be lost. In order to fix this
problem, linearization of the stabilization parameter with respect to the velocity could be performed.
Numerical investigations indicate that streamlength computation is not essential and geometrical
definitions of the characteristic element length may work equally well.

In [1, 21], Tezduyar and Osawa suggest to circumvent the nonlinearity by defining stabilization
parameters based on the solution of the previous time step.

The list of element length definitions is by far not complete. There is a number of alternative
definitions that can be found in the literature among which is the so-called ‘advective length scale’
introduced in [22]. Another example also suggested by Tezduyar is the so-called ‘diffusive length
scale’ introduced in [21]. Both length scale definitions behave very similar to the ones investigated
subsequently, whereas both depend upon the unknown velocity and add to the overall nonlinearity.

4. DISTORTED MESHES

The sensitivity of stabilized methods with respect to distorted and unfavourably shaped elements
is hard to access analytically. Numerical tests have to be performed since. However, a systematic
failure of the USFEM stabilization variant with fixed parameter mk at a particular amount of mesh
distortion can be explained by the properties of the respective stabilization terms.

4.1. Sensitivity of USFEM stabilization variant

4.1.1. Influence of mk. Numerical investigations reveal that the USFEM implementation with
�=1 and mk = 1

12 becomes unstable at a certain level of mesh distortion. The observed instability
is caused by a stabilization term and can easily be shown at the model problem of an unusual
stabilized diffusion problem given by: find 
∈Vh such that

(∇
,∇v)−∑
k

(�
,�k�v)k =(b,v)−∑
k

(b,�k�v)k for all v∈Vh
0 (20)

Equation (20) represents an unusual stabilized formulation of the Laplace equation −�
=b and
defines a bilinear form B(
,v) the coercivity of which depends upon the proper choice of the
stabilization parameter �k .

B(
,
)=‖∇
‖2−∑
k

�k‖�
‖2k
Employing the inverse inequality that is also used for the definition of mk (16), we obtain

B(
,
)�
∑
k

(
1− �k

Ckh2k

)
‖∇
‖2k
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yielding the condition

�k<Ckh
2
k (21)

In the viscous limit (and with a unit kinematic viscosity), the stabilization parameter given by the
definition (14) reduces to

�k = h2kmk

4
which together with (21) yields the stability condition

mk<4Ck (22)

The condition (22) is satisfied when the correct definition of mk is used. Thus, for a proper use
of the unusual stabilized method on distorted meshes, it proves essential to employ the correct
definition of the parameter mk (16) rather than working with a fixed constant as it is frequently
reported in the literature.

The parameter mk enters the stabilization parameter in order to account for the ratio of the first
and second derivatives in the finite element space. Element distortion highly influences this ratio
and thus demands an accurately determined parameter mk . Owing to the local nature of the inverse
estimate (16), the constant Ck is an elemental geometry parameter and can be obtained locally.
However, a correct determination of the constant Ck requires the solution of the eigenvalue problem
inherent in (16) for every element once per time step if the mesh moves significantly during
the computation. While being correct, such a procedure is too much expensive for practical
applications.

The above derivation shows that the potential instability occurs since an USFEM used on an
operator that contains a Laplace term, yields a subtraction of a term containing second derivatives
with a potentially destabilizing effect. However, this term can be removed by employing a SUPG
method rather than USFEM, i.e. by setting �=0 within the stabilization operator (12). Using �=1
changes the sign of the respective terms and hence adds stabilization rather than subtracting it. In
the latter case, the GLS is recovered. The unconditional stability of the stabilized method obtained
by setting �=1 has already been noticed by Douglas and Wang in 1989 [23] and is of particular
interest in the context of deforming meshes.

4.1.2. Determination of mk. To determine the constant Ck that exactly satisfies the inverse esti-
mate (16) for a particular element k with given shape results in an eigenvalue problem. Estimates
of the constant for a variety of different elements have been provided by Harari and Hughes in [18].
In [24], Franca and Madureira suggest to use a stabilization parameter where the solution of this
eigenvalue problem is worked in.

The norms of the gradient and the Laplacean define symmetric positive-definite (or semi-definite)
local operator matrices by

‖∇v‖2k =vTKv and ‖�v‖2k =vTLv

where v denotes the nodal degrees of freedom with respect to the nodal base of Vh
k . The maximal

eigenvalue �1 of the generalized eigenvalue problem is

det(K−�iL)=0

yields the sharp constant Ck =�1/h2k .

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1103–1126
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As the correct value of the parameter Ck can be crucial in USFEM the solution of one eigen-
value problem per element is required. In the case of an moving ALE mesh, a stable USFEM
implementation is obtained only if Ck is determined for every element after each mesh motion
step, which makes the algorithm rather expensive and should be avoided.

4.2. Distorted linear and quadratic quadrilaterals

The two-dimensional Kim–Moin flow is one of the rare academic examples for which an analytical
solution of the incompressible Navier–Stokes equations is known. The problem shall serve here
for a general comparison of all the stabilization parameter definitions listed in Section 3.2.

The Kim–Moin model problem is solved on the unit square �=[0,1]×[0,1] and compared
with its exact solution reading

ux (x, y, t)=−cos(a�x)sin(a�y)e−2a2�2t� (23)

uy(x, y, t)=sin(a�x)cos(a�y)e−2a2�2t� (24)

p(x, y, t)=− 1
4 (cos(2a�x)+cos(2a�y))e−4a2�2t� (25)

An impression of the flow field is given in Figure 1 where velocity vectors on the corresponding
pressure field are depicted. According to (23)–(25), velocity and pressure field remain in space
and decrease monotonically in time.

The solution (23)–(25) is a product of a spatial and a temporal solution, which allows easy
scaling of the error in order to remove the temporal decay of the error, which is due to the decay
of the solution. Thus, the errors reported are absolute spatial errors defined by

erru := ‖uh−u‖0e2a2�2t�
errp := ‖ph− p‖0e4a2�2t�

(26)

where the superscript h indicates the numerical solution and ‖·‖0 the usual L2 norm.

Figure 1. Kim–Moin flow-velocity vectors on pressure field.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1103–1126
DOI: 10.1002/fld



DISTORTED MESHES AND STABILIZED FINITE ELEMENTS 1113

Figure 2. Meshes used for error evaluation with zoom area: (a) undistorted mesh for reference; (b)
distortion mode 1; and (c) distortion mode 2.

The calculations reported here have been performed with the parameter a=2.0 and a kinematic
viscosity of �=0.01. BDF2 has been used for temporal discretization with a time step size of
�t=0.01. The errors after 100 time steps are compared in different discretizations and with linear
Q1Q1 and quadratic Q2Q2 elements both with equal interpolation order of pressure and velocity.
32×32 and 16×16 elements are used with the linear and quadratic elements, respectively, giving
the same number of unknowns in either case.

Within this example no steep gradients occur. Thus, the stabilization methods that are compared
are the ones defined by �=0, �=−1, �=−1 (GLS), and �=�=0, �=−1 (SUPG) both with
fixed mk .

Two different distortion modes are investigated as depicted in Figure 2(b) and (c). The first
degenerates the quadratic elements to trapezoids, while the second introduces very slender rhom-
buses, which turned out to appear easily when the mesh moves. The distorted Q2Q2 elements
work on the same nodal distributions, i.e. it has perfectly placed edge and centre nodes and straight
element edges.

An impression of the error distribution in two examples is given in Figure 3, where the absolute
value of the difference of numerical and analytical solution, i.e. |uh−u|e2a2�2t� is plotted. The
figure shows results obtained with linear GLS stabilized elements with stabilization parameter
according to definition (i). The error distribution on the undistorted mesh and the mesh in distortion
mode 2 are presented. In the latter case, the maximal deviation from the analytical solution is
more than 250 times larger than on the regular mesh. However, the error distribution itself appears
remarkably similar and closely related to the pattern of the solution. This indicates that in both
cases the primary error source is numerical dissipation yielding a faster decay of the flow.

The errors obtained on a regular mesh with equal-sized squared elements as depicted in
Figure 2(a) using the two different discretizations and the stabilization parameters introduced in
Section 3 are summarized in Table I. These results show that even on meshes of perfectly shaped
elements a quadratic interpolation works significantly better than a linear one. This difference is
mainly due to the inherent inconsistency of linear elements, which fail to properly approximate
second derivatives necessary within the stabilization terms. The errors obtained with SUPG stabi-
lization (i.e. setting � to zero) highlight this effect. While linear elements perform better with
SUPG rather than GLS, there is almost no difference when quadratic elements are employed.
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(a) (b)

Figure 3. Distribution of absolute value of normalized velocity error obtained with linear elements after
100 time steps: (a) on distortion mode 0 and (b) on distortion mode 2.

Table I. L2 error in velocity and pressure on undistorted meshes of linear Q1Q1 and quadratic Q2Q2
elements for different choices of stabilization parameter and element length definition.

erru errp erru errp erru errp erru errp
Q1Q1 Q1Q1 Q1Q1 Q1Q1 Q2Q2 Q2Q2 Q2Q2 Q2Q2

� GLS GLS SUPG SUPG GLS GLS SUPG SUPG

(i) 0.005130 0.002877 0.004614 0.002460 0.002624 0.002560 0.002617 0.002544
(ii) 0.005267 0.002919 0.004729 0.002505 0.002623 0.002562 0.002616 0.002546
(iii) 0.005130 0.002877 0.004614 0.002460 0.002624 0.002560 0.002617 0.002544
(iv) 0.005130 0.002877 0.004614 0.002460 0.002624 0.002560 0.002617 0.002544
(v) 0.004815 0.002885 0.004524 0.002676 0.002631 0.002561 0.002624 0.002546
(vi) 0.005130 0.002877 0.004614 0.002460 0.002624 0.002560 0.002617 0.002544
(vii) 0.005130 0.002877 0.004614 0.002460 0.002624 0.002560 0.002617 0.002544

The results given in Table I also show that the element length definitions (i), (iii), (iv), (vi) and
(vii) yield the same result on squared meshes as the element length definitions give equal charac-
teristic lengths in the special case of perfectly squared elements. As soon as element distortion is
considered differences occur.

Clearly, the errors related to the second-order terms decrease with decreasing viscosity, i.e. for
higher Reynolds numbers the effect will be less important. However, it will always play its role in
diffusion dominated areas such as boundary layers. Thus, residual-based stabilization methods at
finite Reynolds numbers should be used with the problem of poorly resolved higher-order terms
in mind.

The errors obtained on the mesh in distortion mode 1 are summarized in Table II and show an even
bigger difference between linear and quadratic elements. On distorted meshes of bilinear elements,
the bad representation of second derivatives tends to spoil the results. Employing SUPG stabilization
rather than full GLS removes the erroneous second derivatives from the stabilization operator
improving the results slightly. The residual itself, however, remains insufficiently represented still
causing errors almost twice as big as the ones obtained by quadratic elements, which are hardly
affected by the element distortion in mode 1.
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Table II. L2 error in velocity and pressure on mode 1 distorted meshes of linear Q1Q1 and quadratic
Q2Q2 elements for different choices of stabilization parameter and element length definition.

erru errp erru errp erru errp erru errp
Q1Q1 Q1Q1 Q1Q1 Q1Q1 Q2Q2 Q2Q2 Q2Q2 Q2Q2

� GLS GLS SUPG SUPG GLS GLS SUPG SUPG

(i) 0.007613 0.005044 0.006514 0.004266 0.002638 0.002581 0.002637 0.002587
(ii) 0.007695 0.004969 0.006593 0.004199 0.002636 0.002581 0.002635 0.002590
(iii) 0.007513 0.004839 0.006460 0.004083 0.002638 0.002580 0.002637 0.002587
(iv) 0.007376 0.004821 0.006444 0.004207 0.002642 0.002583 0.002641 0.002589
(v) 0.006994 0.004825 0.006353 0.004376 0.002648 0.002584 0.002644 0.002588
(vi) 0.007422 0.004913 0.006456 0.004251 0.002642 0.002583 0.002641 0.002589
(vii) 0.007785 0.005177 0.006575 0.004321 0.002635 0.002579 0.002634 0.002586

Table III. L2 error in velocity and pressure on mode 2 distorted meshes of linear Q1Q1 and quadratic
Q2Q2 elements for different choices of stabilization parameter and element length definition.

erru errp erru errp erru errp erru errp
Q1Q1 Q1Q1 Q1Q1 Q1Q1 Q2Q2 Q2Q2 Q2Q2 Q2Q2

� GLS GLS SUPG SUPG GLS GLS SUPG SUPG

(i) 0.232357 0.185340 0.043555 0.084645 0.006558 0.009451 0.004198 0.010419
(ii) 0.134009 0.120765 0.055546 0.058709 0.006135 0.008265 0.004601 0.010309
(iii) 0.108969 0.102256 0.057660 0.061274 0.005910 0.008046 0.004624 0.010148
(iv) 0.087337 0.085032 0.058018 0.057737 0.004953 0.007794 0.004212 0.006309
(v) 0.087531 0.087089 0.058085 0.059084 0.005621 0.008779 0.004048 0.004463
(vi) 0.087356 0.085038 0.058027 0.057756 0.004952 0.007793 0.004212 0.006316
(vii) 0.419851 0.272936 0.043516 0.155843 0.006916 0.010307 0.004510 0.018528

Within difficult geometries mesh motion often results in highly stretched arbitrary shapes for
elements with extreme angular distortion. The distortion mode 2 has been designed as a test case
of such situations. The results summarized in Table III show the devastating effect this element
distortion has on linear elements accuracy. Compared with the results obtained with the perfect
mesh depicted in Figure 2(a), the errors increase about two orders of magnitude and the result can
be regarded as spoilt by these errors. Quadratic elements on the same mesh perform significantly
better. An increase of the error has to be expected as the distortion introduces larger elements
exhibiting a poorer approximation quality. But while the error of the quadratic elements is doubled
or tripled compared with the previous calculations it is still small compared with the solution.

Additionally to the element lengths reported in Tables I–III, also the mentioned advective and
diffusive length scale suggested by Tezduyar et al. have been tested. Although one might suppose
that in particular the diffusive length scale could behave well for the present problem, this is not
the case. The errors are in the range spanned by the other parameters. For the diffusive length
scale on the mesh 2(c), convergence is even lost.

A graphical representation of the L2 errors of pressure and velocity is given in the Figures 4
and 5, respectively. It highlights the relative magnitude of the errors on a linear scale and confirms
the previous discussion.

The results obtained on distortion mode 1 and 2 show only very little difference between
the different stabilization parameters, i.e. element length definitions. When linear elements are
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Figure 4. Velocity error obtained on differently distorted meshes with linear and quadratic elements, and
GLS, SUPG and USFEM configuration of the stabilization and element length definition (i).

Figure 5. Pressure error obtained on differently distorted meshes with linear and quadratic elements, and
GLS, SUPG and USFEM configuration of the stabilization and element length definition (i).

employed the velocity error generally increases with increasing stabilization as the insufficiently
resolved residual gets higher influence on the solution. Using SUPG rather than USFEM or GLS
with linear elements reduces the error by one order of magnitude, which again blames the badly
represented second derivatives for the error. Thus, for computations on distorted meshes higher-
order elements are strongly suggested.

However, it is also clearly visible that in all distorted cases large errors are obtained with the
stabilization parameter employing the length definition (vii), i.e. using a large characteristic element
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Table IV. Velocity and pressure error in normalized H1 seminorm on
differently distorted meshes of linear Q1Q1 elements.

graderru graderrp graderru graderrp
Q1Q1 Q1Q1 Q1Q1 Q1Q1

Mode GLS GLS SUPG SUPG

0 0.357003 0.356385 0.356671 0.356563
1 0.455323 0.448726 0.432784 0.431555
2 2.894864 7.005269 2.049585 15.375787

Table V. Velocity and pressure error in normalized H1 seminorm on
differently distorted meshes of quadratic Q2Q2 elements.

graderru graderrp graderru graderrp
Q2Q2 Q2Q2 Q2Q2 Q2Q2

Mode GLS GLS SUPG SUPG

0 0.042845 0.082813 0.043054 0.083754
1 0.059931 0.109139 0.058817 0.110863
2 0.405593 0.912929 0.281089 2.893050

length. Thus, care has to be taken to avoid over-stabilization that yields particularly devastating
results in conjunction with linear elements.

The superiority of quadratic elements is confirmed if the gradient errors are considered. In
accordance with (26) a normalized H1 seminorm of the error can be defined, which is independent
of the temporal decay

graderru := ‖∇uh−∇u‖0e2a2�2t�

graderrp := ‖∇ph−∇p‖0e4a2�2t�
(27)

The H1 seminorm of the error is calculated with the element length definition (i), and for the
three different modes of mesh distortion are given in the Tables IV and V. These errors confirm
the previous observations and show a particular sensitivity of the pressure gradient with respect
to mesh distortion. Interestingly, this sensitivity even increases when the SUPG version of the
stabilization is employed.

4.3. Quadratic elements with misplaced edge and centre nodes

There is a large number of possible distortion modes for quadratic and higher-order elements by
displacement of edge and surface nodes. Misplaced edge and centre nodes can have a huge impact
on the accuracy obtained by the higher-order elements. However, usually there is no need for
allowing arbitrary placement of the non-corner nodes in the elements inside the domain. Only at
curved boundaries edge nodes of higher-order elements have to be placed outside the straight line
defined by the two adjacent corner points.

Nevertheless, we investigate the effect of misplaced edge nodes in the interior of the domain as
we wish to experience the error sensitivity due to such displacements. Our investigation is restricted
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to the edge nodes displaced perpendicular to the undistorted element edge while still residing on
the centre of the new curved edge. The element mid nodes are placed in the centres of the distorted
elements.

The Kim–Moin flow problem discretized by 16×16 Q2Q2 elements is used again as a test case.
The parameters are the same ones as before and again we compare the time-normalized error after
100 steps of �t=0.01. The distorted meshes under consideration are depicted in Figure 6 where
the offset of the edge node perpendicular to the undistorted element edge d is varied between
0�d�1.5h, where h denotes the distance between two adjacent nodes in the original mesh, i.e.
half the original element length.

We use the element length defined in point (i) for the computation of the errors according
to (26). The diagrams in Figure 7 show the evolution of the normalized velocity and pressure error
when the amount of distortion d is changed.

From the diagrams in Figure 7, it can be seen that small or moderate displacements of the edge
node perpendicular to the straight edge can be done without introducing the velocity or pressure
errors due to mesh distortion. Huge displacements of the edge node yield clear deterioration of

(a) (b)

Figure 6. Distorted Q2Q2 element meshes with displayed edge nodes at d=h: (a) distortion
mode 3 and (b) distortion mode 4.

(a) (b)

Figure 7. Evolution of the normalized error depending upon the distortion d of the edge nodes in
distortion: (a) mode 3 and (b) mode 4.
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Figure 8. Evolution of the normalized error obtained with USFEM stabilization for distortion modes 3
and 4 along with the parameter mk .

the results. It is further observed that the SUPG type of the stabilization method, i.e. �=0 yields
significantly smaller errors in velocity and pressure than GLS when high edge node offsets are
considered. Badly approximated second derivatives are able to affect quadratic elements also if high
distortion has to be considered. In most practical cases, however, good geometry approximation
should be possible by placing the edge node with −0.5h�d�0.5h, i.e. with an offset of up to a
quarter of the element length.

A different behaviour is observed if a USFEM version of the stabilization is employed, i.e. if
�=1 (where still �=0 is used). In this case an elemental constant mk is determined according
to (15) has to be employed. The errors obtained on the two meshes depicted in Figure 6 are
displayed in Figure 8 along with the evolution of the parameter mk .

The diagram in Figure 8 shows that the errors obtained for USFEM and the distortion mode 3 are
much larger than those of all other cases. Additionally, the pressure error here significantly exceeds
the corresponding velocity error. This effect is due to the necessary drop in the parameter mk .
Along with a reduced mk , the stabilization parameter �M,k decreases and so does the influence of
the stabilization terms. Consequently, a limit is reached at which insufficient pressure stabilization
occurs and zero pressure modes begin to spoil the solution. However, such pressure modes are
highly mesh dependent and thus only observed for the distortion mode 3 where all elements exhibit
the same distortion. In practical situations this will rarely be the case. Nevertheless, these results
confirm that SUPG or GLS simulations are somewhat preferable compared with USFEM, which
may require a determination of mk within every time step when the mesh is moving.

4.4. Flow past cylinder

Incompressible flow past a rigid cylinder at a Reynolds number of Re=100 is a classical test case
and has been investigated with respect to linear elements of high aspect ratio by Mittal [6]. We
repeat parts of the computations reported in [6] and compare the behaviour of linear and quadratic
elements.

The geometry and the mesh data used are depicted in Figure 9. Three different meshes of linear
Q1Q1 elements are employed differing only in the region close to the cylinder, which is marked
in light grey in Figure 9 where the number of elements along the edge of a subdivision of the
domain is also given. The number of elements along the diagonal line a is 36, 48 and 90, yielding
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Figure 9. Flow past cylinder, geometry and mesh data.

a total number of elements of 4424, 5192 and 7880 for the meshes A4, B4 and C4, respectively.
The elements along a are concentrated towards the cylinder such that a maximal aspect ratio of
the order of magnitude of 101, 103 and 105 results for the three respective meshes A4, B4 and
C4. A second set of three meshes A9, B9 and C9 of quadratic Q2Q2 elements is defined in the
same way by taking half the number of elements at every edge yielding in total a quarter of the
respective linear elements.

The fluid has a viscosity of �=0.005, a density of �=1.0 and an inflow velocity of u∞ =0.5 is
prescribed. At the top and bottom boundary the flow is allowed to slip frictionless along the wall.
Following Mittal in all cases a time step of �t=0.125 has been used.

The parameters used within the stabilization operator are �=0.0, �=−1.0 and �=−1.0. Thus,
stabilization is employed in its best-natured formulation, which is not the SUPG type of stabilization
that was used by Mittal in [6]. A further difference might stem from slightly different time
discretization schemes. Thus, the results cannot be expected to be perfectly identical to those
obtained by Mittal.

We compare the performance of the approach used with the element length definitions given
in point (i), (vi) and (vii) of Section 3.2, i.e. a length definition based on the square root of
the elemental area and the minimal and maximal element lengths hk,min and hk,max on the three
meshes.

Figures 10–12 display the temporal evolution of the lift and drag coefficients

Cl= 2Fl
�u∞d

and Cd= 2Fd
�u∞d

in selected cases, where Fl and Fd denote the lift and drag force, respectively. Additionally, the
normalized pressure distribution along the cylinder obtained from

Cp(x)= 2(p(x)− p0)

�u2∞
+1

where p0 denotes the pressure at the stagnation point of the cylinder, is given in Figure 10 for the
mesh A4 and again in Figure 13 for mesh C9 and the minimal element length according to (vi).
The respective diagrams for all other cases are very similar and thus omitted. Following Mittal
in [6], the pressure distribution is projected to the horizontal direction. The pressure distribution
is evaluated at a maximum of the lift coefficient.
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Figure 10. Lift and drag forces obtained on mesh A4 with three different element length definitions
within the stabilization parameter.

In Figure 10, which shows the behaviour of the linear Q1Q1 elements, a slight dependency of
the results on the stabilization parameter definition can be seen. In particular, the lift value shows
a deviation when hk,max is employed. This is due to the increasing influence of the inconsistency
of linear elements. In contrast to the results reported by Mittal [6], who for some stabilization
parameter definitions observed oscillations on the mesh with the highest aspect ratio, we do not
detect increasing differences or instabilities when the aspect ratio is increased up to the order of
magnitude of 105.

The results obtained from linear elements on the three different meshes are compared in
Figure 11. Even the pressure profile along the cylinder remains correct up to the most distorted
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Figure 11. Lift and drag coefficients obtained on linear meshes with minimal
element length according to (vi).

mesh used. This difference might possibly be influenced by the fact that in contrast to Mittal not
an SUPG type of stabilization, but rather GLS has been used here.

The results obtained with quadratic Q2Q2 elements are even better. In Figure 12, the resulting
lift and drag coefficients on the quadratic meshes are shown, which exhibit very similar and stable
behaviour. The horizontal offset of these curves is caused by different initial dynamics during the
inflow phase. The actual onset of the vortex shedding is very sensitive to the actual amount of
diffusion but also to numerical parameters such as slightly unsymmetric meshes. As soon as the
final vortex shedding has developed, very similar characteristics are obtained. With the quadratic
elements and the element length definition hk,min, the pressure distribution yields a tiny disposition
to oscillations between the edge and corner nodes of the elements. This oscillation can be observed
in the zoom in Figure 13, where the diagram obtained on the mesh C9 is shown. Very similar results
have been obtained on the other two quadratic meshes. This effect indicates that hk,min marks
a lower bound for the element length in highly distorted elements with respect to the necessary
pressure stabilization.

Although still offering very good results, highly stretched elements yield badly conditioned
matrices and thus the solution may require particular consideration. We used the iterative solver
package ‘Aztec’ with a GMRES solver for the meshes A4, B4, C4 and A9, which failed to converge
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Figure 12. Lift and drag coefficients obtained on quadratic meshes with element length according to (i).

Figure 13. Slightly oscillating pressure profile with close-up view obtained on Mesh C9
with minimal element length (vi).

for the remaining cases B9 and C9. There a direct solver had to be employed. However, as the
condition problem is related to single nodes or degrees of freedom of highly stretched elements,
appropriate scaling could be introduced removing the problem if these elements have to be used.
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Table VI. Strouhal number in the different cases.

Number of Number of Aspect Element length (vi) Element length (vii) Element length (i)
Mesh elements nodes ratio Strouhal number Strouhal number Strouhal number

A4 4424 4558 10 0.16949 0.16878 0.16913
B4 5192 5326 103 0.16807 0.16701 0.16736
C4 7880 8014 105 0.16878 0.16807 0.16842
A9 1106 4558 10 0.17131 0.17131 0.17167
B9 1298 5326 103 0.17094 0.17058 0.17058
C9 1970 8014 105 0.17131 0.17131 0.17131

Table VI gives an overview over the Strouhal numbers St=d/(Tu∞) obtained on the different
meshes with the different stabilization parameter definitions. The maximal and minimal obtained
Strouhal numbers differ by less than 3%, which is just half the variation obtained by Mittal on
the Q1Q1 mesh [6].

It is further observed that quadratic elements in all cases yield a slightly higher Strouhal number
indicating that even for the very fine meshes employed around the cylinder quadratic elements
are able to offer more accurate results. In addition, the mean value of the drag coefficient on the
cylinder obtained with quadratic elements is higher than when linear elements are used. This is
due to the lower numerical damping introduced by the stabilization terms in the case of quadratic
elements.

Mittal concludes that the element length hk,min works best. Nevertheless, he reported some
pressure oscillations in the vicinity of the cylinder when this element length was used. As he
used linear elements at Re=100, these conclusions are in perfect accordance with our findings.
Higher stabilization caused by a higher element length may well introduce a significant amount
of artificial diffusion due to badly resolved second-order terms within the stabilization terms.
Consequently, linear elements perform better for lower stabilization parameters. However, there is
a lower bound for the stabilization parameter as artificial pressure modes need to be stabilized as
well. Consequently, local pressure oscillations might well be observed when very low stabilization
is employed.

5. SUMMARY AND CONCLUSIONS

Stabilized finite element methods for incompressible flow can well be used on distorted meshes
and are thus applicable for ALE formulations. Nevertheless, some care should be taken in order to
maximize the accuracy of the results in particular to deforming meshes. It is generally advisable
to employ a GLS or SUPG type of the method rather than a correct USFEM if the constant mk is
not determined exactly.

Only minor differences between different definitions of the element length have been obtained,
which indicates that the element length definition is not crucial in many cases. Thus, a purely
geometric definition of the element length such as the square root of the element area is well
applicable in particular as this choice does not add to the nonlinearity of the problem. However, on
heavily stretched or skewed elements, the maximal element length definition may yield significant
over-stabilization, which introduces high errors. This is particularly critical when linear elements
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are employed, which exhibit an inconsistency error which scales with the amount of stabilization.
Thus, higher-order elements are advisable for computations by means of residual-based stabilized
finite elements on distorted meshes.

The numerical investigation of flow around a cylinder at Reynolds number 100 with Q1Q1
elements reported by Mittal [6] has been repeated, while the results obtained here do not exhibit
any unphysical oscillations on meshes with a maximal aspect ratio up to an order of 105. We
further extended the numerical investigation to biquadratic elements for comparison. In particular,
when quadratic Q2Q2 elements are employed all the definitions considered for the stabilization
parameter, i.e. for the characteristic element length yield almost identical results. Even on these
fine meshes a small difference in the Strouhal number obtained with linear or quadratic elements
can be found, indicating that the superior accuracy of quadratic elements is significant even on very
fine meshes. This finding is also stressed by the fact that the mean value of the drag coefficient is
higher when quadratic elements are employed.

It was further found that in a variety of test cases SUPG performed better than GLS. The
difference is particularly remarkable for linear elements but also on meshes of quadratic elements
with offset edge nodes the effect occurs. The reason is to be found in the viscous term, which
contains second derivatives that are approximated worst compared with lower-order terms. Thus,
dropping the second derivatives from the stabilization operator improves the accuracy on distorted
meshes.

The superiority of quadratic elements is based on a regular placement of the element edge and
centre nodes. Small displacements of edge nodes perpendicular to the original edge still maintains
the good performance of the element, while highly offset edge nodes significantly increase the
error. In practical applications, a good geometry approximation can be obtained by placing the
edge node with an offset of up to a quarter of the element length.
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